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Abstract— We propose statistical tests for pairwise comparisons of 
signal-to-noise ratios when the response variable is “the nominal the 
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I. INTRODUCTION  

Robust parameter design is one of the most creative and 
effective tools in quality engineering. This tool works by 
identifying factor settings to reduce the variation in products 
or processes. Robust parameter design had been practised in 
Japan for many years before it was introduced to the United 
States of America by its originator Genichi Taguchi in the 
mid-1980’s [1].  

One of the central ideas in the Taguchi approach to 
parameter design is the use of the performance criterion that 
he called Signal-to-noise ratio (SNR) for variation reduction 
and parameter optimization. The signal-to-noise ratio is a 
performance measure that combines the mean response and 
variance [2]. The extend to which maximization of such 
criterion can be linked with minimization of quadratic loss 
was considered in [3].  

The signal-to-noise ratio that is used depends on the goal 
of the experiment. Different goals of the designed experiment 
are as follows:  
1. The nominal the best: The experimenter wishes for the 

response to attain a specific target value.  
2. The smaller the better: The experimenter is interested in 

minimizing the response.  
3. The larger the better: The experimenter is interested in 

maximizing the response.  
The signal-to-noise ratio has generated many controversies 

as seen by the discussions on Box’s paper [4] and the panel 
discussions edited by Nair [5]. Different studies have proposed 
statistical improvements to the signal-to-noise ratio, for 
example [6]. 

Multiple comparisons of treatments is one of the most 
important topics in designed experiments. In the literature, the 
concept of multiple comparisons of treatments based on 
signal-to-noise ratios is not studied. The objective of this 
paper is to propose statistical tests based on signal-to-noise 
ratios for pairwise comparisons of treatments when the 
response variable is the nominal the best case. We initially 
define the signal-to-noise ratio for the nominal the best case. 
In addition, for performing statistical inference, we determine 

the asymptotic distribution of the estimate of the signal-to-
noise ratio. Statistical tests for pairwise comparisons of signal-
to-noise ratios are presented. A Monte Carlo study and an 
illustrative example on real data are provided. 

II. SIGNAL-TO-NOISE RATIO FOR THE NOMINAL THE BEST 

CASE  

Let 1 2, , , ny y y…  be a realization of iid random variables 

1 2, , , nY Y Y…  normally distributed with mean µ  and 

variance 2.σ In many cases, it is of interest to achieve a target 
value for the response, say ,y T= while the variation is 

minimum [7]. Deviations in either direction are undesirable. In 
this case, Taguchi recommends the following signal-to-noise 
ratio: 
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Note that (2) can be written as 
� ( ) ( )2 2

10 1010 log 10 log .TSNR y s= −  Kacker [8] pointed out 

that in cases where the response variance and mean are 
independent, one or more factors (tuning or adjustment 
factors) can be used in order to eliminate the response bias, 
that is, the adjustments result in ( ) .E y T=  If one assumes an 

additional model, the loss function ( )2
E y T− reduces 

to ( )Var .y  As a result, the estimate of the signal-to-noise ratio 

reduces to � ( )2
1010 log .TSNR s= −  If the meany  is set at a 

target value, then maximizing �TSNR is equivalent to 

minimizing ( )2
10log s  [2]. When the variation in the 

( )2
10log s component is larger than the variation in the 

( )2

10log y  component, �TSNR  is dominated by the variation in 
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( )2
10log .s  Therefore an analysis of the signal-to-noise ratio 

essentially reduces to an analysis of ( )2
10log s  [1]. 

III.  ASYMPTOTIC DISTRIBUTION OF THE STIMATE OF THE 

SIGNAL-TO-NOISE RATIO  

In order to conduct the tests of hypothesis for pairwise 
comparisons of signal-to-noise ratios, it is important to know 
the distribution of the estimate of the signal-to-noise ratio. The 
multivariate delta theorem [9] is applied for determining the 
asymptotic distribution of the estimate of the signal-to-noise 
ratio.  
Result 1. Asymptotic distribution of TSNR  

Let 1 2, , , ny y y…  be realizations of iid random variables 

1 2, , , nY Y Y…  normally distributed with meanµ and variance 
2.σ Then the estimate of the signal-to-noise ratio for the 

nominal the best case, �TSNR , is asymptotically distributed as 

normal with mean 
�

2

2
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 and variance 
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[10]. 

Proof 
 

The estimate of the signal-to-noise ratio for the nominal 

the best case, say�TSNR , can be written as 
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Let ( )2,µ σ=θθθθ be a vector of unknown parameters of the 

normal population such that the vector ɵ ( )2,y s=θθθθ  is its 

estimator. We recall that the variance-covariance matrix of 
ɵθθθθ is given by ([9]) 
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Let 2:f →R R be a bivariate function such that  
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The corresponding partial derivatives respect to µ  and 2σ are, 

respectively,     
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The gradient vector is 
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Applying the multivariate Delta theorem leads to  
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where 
a

∼  stands for asymptotically. 
Therefore, the estimate of the signal-to-noise ratio is 
asymptotically distributed as normal, this is, 
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IV.  STATISTICAL TESTS FOR PAIRWISE COMPARISONS OF 

SIGNAL-TO-NOISE RATIOS 

In this section, exploiting the properties of the asymptotic 
normality and the Central Limit Theorem ([11], [12]), we 
present statistical tests for pairwise comparisons of signal-to-
noise ratios when the response variable is of the nominal the 
best case. We begin by considering two independent normal 
populations with mean iµ and variance 2 , 1,2.i iσ =   

Suppose that1y  and 2y  are two independent samples of 

sizes 1n  and 2n , respectively, drawn from the above 

mentioned populations such that:  
Sample 1: 

11 11 12 1, , , ny y y y= …  and  
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Sample 2: 
22 21 22 2, , , .ny y y y= …  

Let 
1TSNR  and 

2TSNR represent the corresponding signal-to-

noise ratios. The corresponding estimates of signal-to-noise 

ratios are � 1TSNR  and � 2TSNR respectively. It is desired to test 

the hypothesis  
( )

1 2 1 20 1 14: : ,T T T TH SNR SNR H SNR SNR= ≠against        

or equivalently, 
( )

1 2 1 20 1 1: 0 : 0 5.T T T TH SNR SNR H SNR SNR− = − ≠against     

Result 2. Mean and standard deviation of � �
1 2T TSNR SNR−   

Let 
11 11 12 1, , , ny y y y= …  and 

22 21 22 2, , , ny y y y= …  be two 

independent samples of sizes 1n  and 2n , respectively, drawn 

from two independent normal populations with meaniµ  and 

variance 2, 1,2.i iσ =  Under H0, the mean and standard 

deviation of � �
1 2T TSNR SNR−  are asymptotically zero and 
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The standard deviation of the difference of � 1TSNR and 
�

2TSNR , say 
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1 2T TSNR SNR
σ

−
, is determined as follows: 
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Result 3. Statistical tests for comparing 
1TSNR and 

2TSNR  

The statistical test for comparing 
1TSNR and 

2TSNR in the case 

1 2 1, ,µ µ σ and 2σ  are known is 
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the statistical test becomes
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 when 

1 2 1, ,µ µ σ and 2σ  are unknown [10]. 

Proof 

The statistical test in case 1 2 1, ,µ µ σ and 2σ are known is given 

by 
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and the statistical test when 1 2 1, ,µ µ σ and 2σ  are unknown is 
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Under 0H , 

1 2
0T TSNR SNR− = , and the statistics in (18) and 

(19) reduce to the following expressions. 
The statistical test in case 1 2 1, ,µ µ σ and 2σ are known is given 

by 
� �
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The statistical test in case 1 2 1, ,µ µ σ and 2σ are unknown is 

given by 
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Under 0 ,H ( )0,1
a

z N∼ and ,
a

t tν∼ where 

1 2 2n nν = + − represents the degrees of freedom of the t  

distribution. The null hypothesis, 0 ,H is rejected if 
2

z zα>  or 

,
2

,t tα ν
> where 

2

zα  is the 
2

α
quantile of the standard normal 

distribution and 
,

2

tα ν
is the 

2

α
quantile of the t  distribution 

with ν degrees of freedom.  
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V. MONTE CARLO STUDY OF THE PROPERTIES OF THE 

PROPOSED TESTS  

Monte Carlo simulations are performed to evaluate the 
performance of the proposed statistical tests in terms of test 
sizes and powers. Sample means and sample variances are 
used to determine the estimates of signal-to-noise ratios. 
Simulation under 0H , this is, simulation with equal population 

parameters ( X Yµ µ=  and X Yσ σ= ) permits estimating the 

test size. Under 1H , simulations are conducted after applying 

an increment ∆ to the population parameters. Simulations with 
different values of population parameters give the estimates of 
power tests. 

A. Procedure for Monte Carlo simulation 

The simulation process has been conducted according to the 
following procedure:  
1. From two independent normal populations, X  and ,Y  

such that ( )2,X XX N µ σ∼  and ( )2, ,Y YY N µ σ∼ simulate 

two independent samples of sizes 10.X Yn n= =  

2. Calculate the sample means and sample variances; 
2, , XX Y s  and 2 .Ys   

3. Calculate the estimates of the signal-to-noise ratios; � XSNR  

and � .YSNR  
4. Based on asymptotic normality of the estimates of the 

signal-to-noise ratios, simulate 10000MC = replicates of 

�
�

�( )2,
X SNRX

a

X
SNR

SNR N µµ σ∼  and 

�
�

�( )2, .
Y SNRY

a

Y
SNR

SNR N µµ σ∼  Four configurations of sample 

sizes are used: 10, 20, 30, 60.n =  

5. For each replicate, conduct a t  test for the null hypothesis 

0 : 0,X YH SNR SNR− =  and count the number of rejections 

(# Rejections). 

6. Determine the rejection rate: .
#

MC

Rejections
 

The parameters used in Step 1 are determined by applying 
an increment ∆ according to the following scheme:  
1. Simultaneous change of population means and population 

variances. The population parameters are determined as 
follows: 

Y X µµ µ= + ∆   ;Y X σσ σ= + ∆and where µ∆  and σ∆ are 

increments in population mean and population variance, 
respectively. 

2. Changing the population means and maintaining the 
population variances at constant values. In this scheme, the 
population parameters are determined as follows: 

.Y X Y Xµµ µ σ σ= + ∆ = and  

3. Changing the population variances and maintaining the 
population means at constant values. In this case, the 
population parameters are determined as follows: 

.Y X Y X σµ µ σ σ= = + ∆ and  

Four configurations of increments are used: 

0.001, 0.01, 0.1, 1.∆ =     The increment 0∆ =  implies equal 

parameters. 

B. Results 

Table I shows the estimated sizes of the test statistic. The 
population parameters used are 35X Yµ µ= =  and 2.X Yσ σ= =  

The row entries represent the proportion of times 0H  was 

rejected at 0.05α =  under 0H , this is, the proportion of 

times 0H  is wrongly rejected. The test size is very close to the 

significance level. Moreover, it seems that the sample size 
does not affect the value of the test size.  

 
TABLE I. Estimated Type I error rates oft test for various sample sizes. 

Sample size  Type I error  
10 0.0499 
20 0.0500 
30 0.0498 
60 0.0496 

 
Table II contains the estimated powers obtained in 

changing the population means and population variances 
simultaneously. In this case, the population parameters used in 
simulations are: .Y X Y Xµ σµ µ σ σ= + ∆ = + ∆ and  The row 

entries represent the proportion of times 0H  is rejected at 

0.05α =  under 1H , this is, the proportion of times0H  is 

correctly rejected. 
 

TABLE II. Estimated powers of t test for various sample sizes and various 
increments, changing the population means and population variances 

simultaneously. 
Sample 0.001µ∆ =   0.01µ∆ =   0.1µ∆ =   1µ∆ =   

size 0.001σ∆ =   0.01σ∆ =    0.1σ∆ =  1σ∆ =   

 10 0.0503  0.0799 0.9990   1 
 20 0.0589  0.8642  1   1  
 30 0.1365  1  1  1 
 60 0.9981  1   1  1 

 
Table III contains the estimated powers, obtained in 

changing the population means and maintaining population 
variances at constant values. In this 
case, .Y X Y Xµµ µ σ σ= + ∆ = and The row entries represent the 

proportion of times 0H  is rejected at 0.05α =  under 1.H  
 

TABLE III. Estimated powers of t  test for various sample sizes and various 
increments, obtained in changing the population means and maintaining the 

population variances at constant values. 

 Sample size 0.001µ∆ =   0.01µ∆ =   0.1µ∆ =   1µ∆ =   

 10 0.0499  0.0504 0.0622   1 
 20 0.0497  0.0549 0.4549   1  
 30 0.0503  0.0800  0.9996  1 
 60 0.0596  0.08449   1  1 

 
Table IV contains the estimated powers, obtained in 

changing the population variances and maintaining population 
means at a constant value. In this 
case, .Y X Y X σµ µ σ σ= = + ∆ and  The row entries represent the 

proportion of times 0H  was rejected at 0.05α = under 1.H  
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TABLE IV. Estimated powers of t test for various sample sizes and various 

increments, obtained in changing the population variances and maintaining the 
population means at constant values. 

 Sample size 0.001σ∆ =   0.01σ∆ =   0.1σ∆ =   1σ∆ =   

 10 0.0499  0.0841 0.9997   1 
 20 0.0602  0.9000 1   1  
 30 0.1471  1  1  1 
 60 0.9995  1   1  1 

 
Results in tables II, III and IV show that the estimated 

powers of t test increase as the increments increase. Effects of 
sample sizes to the estimated powers of t  test are remarkable. 
For the same value of increment in the population parameters, 
the proposed test detects a significance difference between 
two values of signal-to-noise ratios, with high power, if the 
corresponding sample size is also high. 

VI.  REAL EXAMPLE  

We consider the problem of a robust design conducted on 
a chemical process [11]. The target value is set at T = 6. This 
the best value obtained for the proportion of impurities in [14].  
The data obtained for the first two runs of the experiment are 
in table V.  

 
TABLE V. Mean and variance values for the first two runs of the chemical 

process. 
Experimental 

run 
Data Mean Variance �TSNR  

1 57.81 37.29 42.87 47.07 46.26 75.34 14.53 
2 24.89 4.35 8.23 14.69 13.04 80.60 3.24 

 
We compare the signal-to-noise ratios of the first two 

experimental runs. Conducting the required calculations leads 
to the results summarized in table VI. 

 
TABLE VI. Results for the test 

1 20 : T TH SNR SNR= . 

�
1TSNR  �

2TSNR  �� �
1 2T TSNR SNRσ −  t  ,

2

tα ν
 

14.53 3.24 2.67 4.23 2.45 

 
As 

,
2

4.23 2.45t tα ν
= > = , we conclude that 

1TSNR and 

2TSNR are statistically different at the level of significance 

0.05α = . 

VII.  CONCLUSIONS  

This paper presents the statistical tests for pairwise 
comparisons of signal-to-noise ratios when the response 
variable is the nominal the best case. Based on multivariate 
delta theorem, the asymptotic distribution of the estimate of 

signal-to-noise ratio is determined. We propose statistical tests 
for pairwise comparisons of treatments with regard to the 
signal-to-noise ratio when the response variable is the nominal 
the best case. The correction to these pairwise comparisons 
can be done using the Bonferroni inequality as stated by 
Chang [15]. The correction consists in applying the adjusted 
level of significance and adjusted p− value.  

Illustrations of the proposed tests based on simulation and 
on real data are presented. The values of the estimated test 
sizes are displayed in Table I. Tables II, III, and IV display the 
values of the estimated test powers according to the three 
scenarios presented in the paragraph on Procedure for Monte 
Carlo simulation. The results of the Monte Carlo simulations 
show that the statistical tests we propose preserve the test size 
when simulations are conducted under 0H  and have excellent 

powers when simulations are conducted under1H . 
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